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Abstract 

The class of space-times has been determined at the connection level, assuming the 
existence of some symmetrical relations between the Ricci rotation coefficients. It has 
been assumed, for instance, that at least two shear-free congruences of null geodesics 
exist. We have shown that only D type or conformally flat space-times can belong to 
this class. The theorem has been proved that a system of coordinates exists in which 
the metric tensor can depend on two coordinates, only. The metric tensor has been 
determined with an accuracy to two functions, each of which is a function of only 
one coordinate: Linear, second-order differential expressions have been found for these 
two functions. They determine the Ricci tensor. Several solutions of the Einstein- 
Maxwell equations with a cosmological constant are given. 

1. Method and Formalism 

When presenting some o f  the results and in the calculat ions the tetrad 
formal ism was used, as described by Debney  et al. (1969) .  This formal ism 
has also been presented in abbreviated form in our  previous work ,  preceding 
the present paper in this issue (Kowalczyfiski  and Plebafiski, 1977).  

The tetrad field o f  independent  null  vectors eau(a,u = 1, 2, 3, 4)  deter- 
mined in the whole  space-t ime is character ized by  the fact  that  t he  vectors  
etu and e ~  are complex  and conjugate,  and the  e ~  and e 4 ones are real. 
The metr ic  form is as follows: 

ds 2 = 2 e l e  2 + 2e3e 4 (1.1) 

1 On leave from the Institute of Theoretical Physics, Warsaw University, Warsaw, 
Poland. 
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where 

e a = ea~dx"  (1.2) 
def 

The convention is kept that Greek letters are suffixes of  the tensor 
formalism and Latin letters and numbers those of  the tetrad formalism. 

Units have been chosen so that the speed of  light and constant o f  
gravitation are equal to unity: 

c = a = 1 ( 1 . 3 )  

and the signature is +++-.  

2. Principal Assumpt ions  and Theorem Regarding the Metric Tensor 

The object of  our interest in the present work is a class of  such solutions 
of the Einstein equations of (1.1) shape with differential forms Fab given 
by the first structure (Cartan) formulas, which have the following form in 
our tetrad eau system: 

P42 = A e l  - Be3 = f2 du (2.1a) 

1731 = A e  2 - Be 4 = ~2 dv (2.1b) 

F12 + F34 = C(e 1 - e 2) +D(e 3 - e 4) (2.1c) 

where A, B, C, D, ~ ,  u, v are complex functions of  the coordinates, and we 
assume that 

d in ~2 = - C ( e  1 + e 2 )  - D(e 3 + e 4 )  (2.1d) 

Im(A +O)  = Im(B + C) = 0 (2.te) 

In equation (2.1 d) the postulate is concealed that 

a 4= 0 (2.2) 

The reason for investigating this class of metrics is the fact that to this 
class belongs a physically interesting metric which includes seven constants 
and is a generalization o f  the Kerr-Newman metric (Plebafiski and Demiafiski, 
1975). 

Let us observe that the relations (2.1a)-(2.1 d) are invariant with regard 
to the simultaneous transposing of  the tetrad suffixes 1 <~ 2 and 3 ~ 4. 

The following relations result directly from equations (2. t a)-(2.1 c): 

1"422 = P424 = 1"31t = P313 = 0 (2.3a) 

F421 = 1"312 = A (2.3b) 

I'423 = P3t4 = - B  (2.3c) 

P12t + P341 = - 1"122 - P34z = C (2.3d) 

P123 + ra43 = - 1"124 - P 3 4 4  = D  (2.3e) 
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whereas from (2.1a)-(2.1c) and the second structure (Caftan) formulas it 
follows that among all the independent tetrad components of  the Riemann 
tensor, R a b c d  , only the fo t lo~ng three, R 4231, R 12 t 2 + R 3412, R 1234 + R 3434, 
can be different from zero. We obtain for instance that 

R 4 2 3 1  = - 2 ( A D  + BC)  (2.4) 

R22 = R 24 = R 4 4  = R 3 3  = R 2 3  = 0 (2.5) 

C O) = C (2) = C (4) = C (s) = 0 (2.6) 

C (3) = R / 6  - 4 ( A D  + BC) (2.7) 

Equations (2.6) tell us that the class of  metrics (2. t)  may include metrics 
describing space-times either conformally flat, if C(3) = 0, or of  Petrov [2, 2] 
type, if C(3) v ~ 0, (type D). Besides, it follows from (2,3a) that the independent 
vectors e 3u and e 4u are by assumption geodesic and shear-free, and from (2.6) 
we have that these vectors are double Debever-Penrose ones if and onty if 
C(3) 4= O. 

Let us now introduce the following auxiliary symbols: 

131 = e 1 + e  2 (2.8a) 
def  

E 2 = i ( e  1 - - e  2) (2.8b) 
def  

E 3 = e 3 + e 4 ( 2 . 8 c )  

def  

E 4 = e 3 - -  e 4 (2.8d) 
clef 

The use of  these symbols will be in certain situations more convenient than 
applying symbols e a. From (2.8) we get the following relations: 

ds 2 =2e le  2 +2e3e 4 =½[(El)  2 +(E2)  2 +(E3)  2 - ( E 4 )  2] (2.9) 

e 1 A e 2 a e 3 A e 4 = - -  (i /4) E 1 a E 2 A E 3 a E 4 (2.10) 

it follows from (2.10) that the forms E / are independent and span the whole 
space-time. Mention should be made that the numbers i in the U symbols 
are not tetrad suffixes. 

We have the following: 

Theorem 1. For every metric (2.9), if the relations (2.1) hold, then 
there exist such a system of  real coordinates x, y ,  z, t and such real 
functions f, g, k, l, p, q, all independent of  the variables z and t 
(hence able to depend only on variables x, y),  that 

~1 = 2f dx (2.11a) 
E 2 = 2k  dz + 2 I d t  (2.1 tb) 
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Ea = 2g dy (2.11c) 

E 4 = 2p dz + 2q dt  (2.1 ld) 

Of course in view of the fact that the forms E / are independent and 
span the whole space-time, we must have 

f:/=O, g ¢ O ,  k q - l p 4 = O  (2.1 le) 

The proof of Theorem 1 is long and involves laborious calculations. 
Darboux theorems are used. The scheme of that proof is given in the 
Appendix. 

In the premise of Theorem 1 the conditions (2.!)  can be modified by 
replacing condition (2.1e) by the condition A ¢ 0 or B 4= 0, but then the 
range of the theorem will be reduced (see the last paragraph in the Appendix). 

3. Determination o f  the Metric Tensor and o f  Ricci Rotation Coefficients 
in a General Way 

By Theorem 1 the starting point for our further considerations are relations 
(2.11). Substituting the forms e a given by (2.8) and (2.11) in the first Cartan 
formulas we obtain the following expressions for Pabc: 

1 i 
F421 = P312 =A = f-Y- + - -  (pl,y - qk ,y)  + Pq,x) (3.1a) 

- 4fg 4gr - ~  (qp'x -° 

P422 = P311 -- - ~gf'Y + 4gr-- (qk,y - pl,y) + j r  (kl,x - lk,x) (3.1b) 

[`423 = [`314 ...... B = g,x + 1 7  (kq,x i 4fg 4fr - I p , x ) + ~ g r ( k l , y - l k , y  ) (3.1c) 

1 i 
=g,x + _ _ ( l p , x  _ kq,x)  +-4-~ (qP,y - Pq,y) (3.1d) F424 =p3a3 4fg 4fr 

1 i 
Plzl  + P341 = - P122 - [`342 = C =  2-~f (Pl ,x  -~ qk,x)  + 4g--~ 

x (kl,y - l k , y  + pq,y - qp, y) (3.1e) 

1 
[`123 + [ '343 = -- [ '124  -- F344  =D = ~gr ( l p , y  -- k q , y )  

i 
+ ~-~ (kl,x - l k , x  + Pq,x - qP,x) (3.10 

where 

r = kq - Ip (3.Ig) 
def 
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Each independent quantity Pa~e was calculated here separately, without 
making use of relations (2.3). Hence, equations (2.3b)-(2.3e) as welt as the 
corresponding two equalities in (2.3a) (without equalling to zero) result from 
(2.11). This means that if we assume (2.11), then some of the relations (2.1) 
are conclusions from other ones. 

Considering the last of conditions (2.11e), at least in one of the pairs 
k, q or t, p both functions must be different from zero. Without loss of 
generality the choice of such a pair is arbitrary. Let us assume that 

k ~ o, q ~ 0 (3.2) 

Setting the right-hand sides of (3.1b) and (3.1d) equal to zero on the 
basis of (2.3a) and using (3.2) we get after integration that l = Fk,  p = - G q ,  
r = kq - lp = kq( l  + FG), f = hk(1 + FG),  g = ]q(1 + FG),  where the functions 

F = FO'), G = G(x) (3.3) 

and h = h(x),  f = f(y) are disposable functions of one variable, x or y, appear- 
ing in the course of integration. From the relations just obtained and conditions 
(2.1 le) it follows that 

1 + F G  --#0 (3.4) 

By integrating the real part of equation (2.1d) and making use of (3.2) 
we come to the conclusion that there exists such a function M for which 
k = MP and q = MQ, where 

M = M ( x , y ) ~ O ,  P=P(x )4=O,  Q = Q ( v ) v s O  (3.5) 

The functions P, Q of one variable, x or y, appear as disposable functions in 
the course of integration. 

Let us now perform the following transformation of the coordinates x 
and y: dx'  = hP 2 dx,  dy'  = ]Q2 dy. After dropping the primes the expressions 
for E i and the independent quantities Faac assume in the modified x, y, z, t 
coordinate system the form 

E 1 = (2M/P) (1 + FG) dx (3.6a) 

E 2 = 2MP(dz + F dr) (3.6b) 

E 3 = (2M/Q) (1 + FG) dy (3.6c) 

E 4 = 2a~IQ(dt - G dz) (3.6d) 

Q Oy [M(1 + FO)] iQG,x 
P421 = F 3 t 2  = A = -- (3 .7a)  

2Mz(1 + FG) 2 4m(1 + FG) 2 

P 0 x [M(1 + FG)] iPF,y (3.7b) 
P423 = •314 = - B  = 2M2( 1 +FG)  2 +4M~lt + F G )  2 



376 KOWALCZYI~SKI AND PLEBANSKI 

Ox(Me) 
P121 + P341 = -- P122 -- P342 = C =  2M2(1 + FG) 

I"t23 + P343 = -- P124 - P344 = D  - 
ay(MQ) 

2M'~(t + FG) 

iPF,y + 
4M(1 + FG )2 

(3.7c) 

iQG ,x + 
43I(1 + FG )2 

(3.7d) 

The above transformation of  the old coordinates x, y is such that  neither 
the factor [P(x)] -1 in the f o r m E  1 nor the  factor [Q(y) ] - I  in the f o r m E  3 
have been absorbed by the differentials of  the new coordinates, dx and dy,  
respectively. This was done deliberately to simplify the expressions that will 
be used later. 

It is seen from relations (2.9) and (3.6) that the quantity 21142 has the 
character of  a conformat coefficient for all metrics ds 2 belonging to class 
(2.1). Furthermore, it can be easily observed that (2.1e) results from (3.7). 
This means that if we make the assumptions (2.1a)-(2.1d) then the relations 
(2.1 e) are equivalent to relations (2.11). 

From equations (2.1a), (2.1b), and (2 . td)  we can conclude that  the 
function is determined with an accuracy to any arbitrary multiplicative 
constant. I f  we assume that gZ = 1~21 e i~°, then [~21 and ~ are determined with 
an accuracy to an arbitrary multiplicative and additive constant, respectively. 
On the basis of  the latter and of the result of  integration of the real part of  
equation (2.1d) performed earlier we can assume that 

1~21 = MPQ (3.8) 

The imaginary part of  relation (2.1d) takes the following form: 

d ~ = _ ½  F'Y-- d x _  ½ G,x 
1 + FG ~ - ~ - G  dy (3 .9 )  

If we subtract equations (2.1a) and (2.1b) from each other, noting that 
the forms E 2 and E 4 contain only differentials dz and dt and that all the 
functions that we use here are functions of  variables x, y ,  only, and make 
use of  (3.8), we obtain the following two complex equations: 

1 / -Ox [M(t + FG)] + ½MFG,x - iF by [M(1 + FG)] 
M 2 (1 + FG)  2 

k 

} - 2 MF,y = a 1 e'~° ( 3 . 10a )  

1 {-¢?y [M(1 + FG)] + ~MGF,y - iG O x [M(1 + FG)] 
M2(1 + FG) 2 

k 

; } - -- MG,x = a2e '~ (3.10b) 
2 

where a 1, a2 are complex constants. 
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It appears that summation of  equations (2.1a) and (2.1b), taking account 
of  (3.3), (3.5)-(3.8), and (3.10), gives no relations that could determine more 
accurately the functions occurring in (3.6). 

4. Determination o f  the F, G, M Functions and o f  Expressions for  Tetrad 
Cornponents o f  the Ricei Tensor 

The considerations in this paragraph will be divided into four separate 
parts corresponding to the cases when F,y = G,x = O;F,y = 0 and G,~ 4= 0; 
F,y ~ 0 and G,x = 0; F,y 4= 0 and G,x ~ O. 

4.1. The ease F,y = G,:¢ = 0. I f  

F = G : 0  (4.1a) 

then it follows from (3.9) that ~a = const, which, in view of  the earlier 
mentioned fact that ¢ is determined with accuracy to an arbitrary additive 
constant, authorizes us to assume without loss of  generality that 

¢ = 0 (4.1b) 

It then results from equations (3.10) that both constants a 1 and a2 are real, 
and that 

M =  (.aix + a2y +a3)  - i  (4.1c) 

where a 3 is an arbitrary real constant. From (2.9) and (3.6) we see that the 
shape of  form ds 2 will not change if we assume that a3 = 0 in the case when 
at least one of  the constants al,  a 2 is different from zero. If, on the other 
hand, a 1 = a 2 = O, then a3 may have any arbitrary value different from zero, 
since, as follows from (3.6), the function M is determined with accuracy to 
the arbitrary multiplicative constant. 

If  we keep to the general expression for M given by (4.1c) and make use 
of  the second Cartan formulas as well as of  the relations (3.7) and (4.1a), 
we can find the independent quantities Rab missing in (2.5): 

R~2 = ¼(alx + azy  +a3) 2 3 x 3xP 2 -- a l ( a l x  + a2y +a3) ~x P2 

_ 3 a 2p2 + 3a22Q2 (4.1d) ½a2(alx + a2y + a3) OyQ 2 + ~ 1 

R34 = ¼(alx + a2y +a3) 2 3y OyQ 2 - a2(alx + a2y +a3) 3yQ2 

- ½al (a lx  + a2y + a3) 3xP 2 + 3a12P2 + ~a22Q 2 (4.1e) 

In the situation when one of  the constants F, G or both of  them are 
different from zero we can, performing simple linear transformations of  the 
coordinates, bring relations (3.6), and hence also (3.7), to such a form in the 
new coordinate system that the effect is such as if we assumed in the old 
coordinate system F = G = 0 in equations (3.6). Hence, the relations (4.1) 
given here are most general for the case F,y = G, x = O. 
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4.2. The case F,y = 0 and G, x 4 = O. If  

F = 0 (4.2a) 

then, as in the previous case, because ¢ is determined with accuracy to any 
arbitrary additive constant and in view of  the fact that the transformation of  
the shift of  the coordinates by a constant has no effect on the relations (3.6), 
(3.9), and (3.10), we find from (3.9) and (3.10) without loss of  generality 
that 

~o = coy, 0.9 = ~ = const ~ 0 (4.2b) 

G = -2cox (4.2c) 

aa = 0, a2 = h-2 v~ 0 (4.2d) 

0.9 
M = (4.2e) 

a 2 sin(coy) 

Subsequently, making use of  the second Cartan formulas and of  the 
relations (3.7), (4.2a), (4.2c), and (4.2e), we find the missing quantities Rab : 

R 12 = ~I a2z sin2(COY)COZ 8x 3x P2 - ½ a22 sin(coy)0.9 cos(coy) 3yQ2 (4.20 

+ ½(3 cos2 (coy) - sin 2 (coy)a22Q 2 

R3 4 = ¼ a2 2 sin2(coY)o.) 2 Oy OyQ2 _ a2 2 sin(coy)0.9 COS(COy) OyQ2 

+ 3 a z,-~2 (4.2g) g 2 ~  

In the case when F4= 0, such transformations of  the coordinates x, z, t can 
be made which also produce changes of  the functions G, M, P (keeping the 
coordinate y and function Q intact), and thus the forms E / in the new co- 
ordinate system are such as if we had put in the old coordinate system F = 0 
and G = -2cox in equations (3.6). Thus the relations (4.2) are most general 
in the case when F,y = 0 and G,x 4= O. 

4.3. The case F,y 4= 0 and G,x = 0. This case is symmetrical to the former 
case, and, as in that case, the most general relations in the case F,y g: 0 and 
G, x = 0 can be presented in the form 

G = 0  

= cox, 0.9 = ~ = const 4 :0  

F = -2coy 

al =al =/=O, a2 =0 

(4.3a) 

(4.3b) 

(4.3c) 

(4.3d) 

(..0 
M = (4.3e) 

a 1 sin(wx) 
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RI~ = -41 al 2 sinS( c°x)co2 Ox Ox P2 _ al 2 sin(cox) cos(cox) axpZ + ~3a12P2 
CO 

(4.30 

R34 = ¼ a12 sin2(cox) 
O9 2 

3y OyQ2 _ ½ al 2 sin(cox) cos(cox)~xp z 

CO 

+ ½ [3 cos ~ (cox) - sin 2 (cox)] a12/'2 (4.3g) 

One can easily see that if in relations (4.2) or (4.3) the limiting transition 
co ~ 0 is made, subcases of  relations (4.1) are obtained when a t = a3 = 0, 
a2 @ 0, or a 2 = a3 = 0, a 1 @ 0, respectively. 

4.4. The ease F,y ~ 0 and G,x ~ O. Analyzing equation (3.9) for this case 
we find that (F,y) 2 = baF 2 + b2F - b3, (G,x) 2 = b3G 2 + b2G - bl,  where 
b i are real constants. From further prolonged investigations it follows that 
we must have b22 + 4bl b 3 > 0. After integrating equation (3.9) and calculat- 
ing the function M from relations (3.10) (the latter can be done algebraically- 
without integrating) we obtain functions ~0 and M as functions o f  F and G 
and of  the seven real parameters Re a 1, Im a a, Re a2, Im a2, b l, b 2, b3. A 
laborious analysis of  the/elations obtained allows us to eliminate five out of  
these seven parameters. Finally we arrive at the following relations: 

(F,y) 2 = b l ( F  2 - 1) + b2F (4.4a) 

(G,x) 2 = bl(G 2 - 1) + b2G 4.4b) 

- 2 b  l(F + G) + b 2(FG - 1) 
= ½ arc cos (4.4c) 

(1 + FG) (b2 z + 4b12) 1/2 

M = F,y(1 + FG) -I [F(sin ~ + cos ¢) + cos ¢ -- sin ¢] -1 

= G,x(1 +FG) -1 [G(sin ~0 + cos ~) + cos ~ -  sin ~p] -1 (4.4d) 

As is seen, in the case F,y 4= 0 and G,:~ v a 0 we cannot have bl  = b2 = 0. 
Making use of  the above relations, of  (3.7) and of  second Caftan formulas, we 
obtain the independent quantities Rab lacking in (2.5): 

R12 = f l  ~x ax Pz +f2 ax P2 +f3 P2 + f 4  ~yQ2 +fsQ2 (4.4e) 

R34 = gl Oy 3yQ2 + g2 ~yQ2 + g3 Q2 + g4 Ox Pz + gs P2 (4.40 

where fi = fi(F, G), gi = gi( F, G). Since the functions f/, gi and M are functions 
of F and G, only, not related directly to x and y, it would seem purposeful 
to use F and G as coordinates instead o f y  and x, respectively, which is of  
course possible in view of the assumption assumed that F,y 4= 0 and G, x 4= O. 
Such a procedure is, however, inconvenient because of  the complicated form 
of the explicit expression M(F, G) which entails as a further consequence 
very complicated explicit forms of  the expressions fi(F, G) and gi(F, G), 
making them of  little use for the calculations of  functions P(G) and Q(F). 
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For these reasons, and primarily because of the small practical usefulness of 
the expressions f/(F, G) and gi(F, G), when treating F, G as coordinates, we 
have not given the explicit forms of the coefficients fi(F, G) and gi(F, G) in 
equations (4.4e) and (4.40. In practice it is much more convenient to 
integrate equations (4.4a) and (4.4b), and subsequently make easy trans- 
formations of the coordinates x(x ' )  and y(y')  converting the expressions 
F0')  and G(x) to the simpler F(y') and G(x') ones, and finally using the 
expressions M(x' ,  y ' ) ,  f i (x ' ,  y ' ) ,  gi(x', y ') .  Of course integration of equations 
(4.4a) and (4.4b) splits into three separate integrations for three separate 
cases when bl > 0, bl = 0 or b I < 0. The expressions F(y') and G(x')  are 
then hyperbolic, algebraic, or trigonometric. 

In the case b 1 < 0 particularly interesting from the physical point of view 
since it includes the mentioned generalization of the Kerr-Newman metric, 
the expressions R j2 and R34 have been given in explicit form by Ptebafiski 
and Demiafiski (1976) (see also Plebafiski, 1975a, b). 

In this way by (2.9) and (3.6) the class of metrics given by the assumptions 
(2.1) has been fully determined with an accuracy to two unknown functions 
P(x) and Q(y), each of one variable. Owing to the determination of the 
expressions for R 12 and R 34 (the remaining Rab being equal to zero 
identically) the functions P and Q can be determined from the Einstein 
equations, and hence depend on what energy-momentum tensor Tuv is used 
in these equations. This tensor can be chosen arbitrarily with the constraint 
resulting from the identities (2.5) according to which we must have Tab = 0 
for all pairs of tetrad suffixes (a, b) different from (1, 2) and (3, 4). 

It seems that the fact is worth emphasizing that, for the class of  metrics 
we are interested in, only the tetrad components of the Ricci tensor that are 
different from zero, i.e., Rt2 and R34, may be determined by expressions 
linear with respect to the structural functions p2, Q2 and their derivatives. 

5. Several Solutions o f  Einstein-Maxwell Equations without  Currents and 
Charges but  with the Cosmological Constant for  the Case when F,y = G,x = 0 

Several solutions of the equations 

Gab = - Xgab - 2(FacFb c - ~gabFca Fca) 
(5.1) 

d(Fab e a A e b) = 0, F ab ; b = 0 

where the quantities Fab are tetrad components of the electromagnetic field 
tensor F,u~,, and X is the cosmological constant, have been obtained in the 
form (2.9) and (3.6) if the relations (4.I) are fulfilled. These solutions are 

M = l / y ,  P= (ax z + b) l/z, Q = (~3, -- ay 2 + cy 3 + 2e2y4)  1/2 

Ft2 =iey 2 , /~½3 = F24 = F34 = 0 (5.2) 

where a, b, e, e are arbitrary constants, This metric is contbrmally flat if and 
only if c = e = 0. 
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The following solution is symmetrical to the former one: 

A I  : 1 / x ,  P : (-~X - a x  2 + c x  3 - 2 e 2 x 4 )  1/2 , Q = (@,2 + b ) l /2  

F34 = e x  2 ,  F12 = F23 = F24 = 0 (5.3) 

where a, b, c, e, are arbitrary constants. Also this metric is conformally flat 
if and only if c = e = 0. 

M =  1/21/2, p =  [@ _ e2 _ g2)x2 +a ] l /2 ,  Q =  [(~k + e2 +gZ)y2 + b ]  1/2 

F 1 2  = i e ,  F34 = g, F23 = F24 = 0 (5.4) 

where a, b, e, g are arbitrary constants. This metric is conformally flat if and 
only if 3. = 0. 

M=( y+bx) -1, P-- aex+ z+b2 ' Q-- bey+ a2+b - ] 

-- 0 (5.5) 

where a, b, c are arbitrary constants. This metric is conformally flat and it 
includes no electromagnetic field. 

The constants appearing in the above solutions are fully arbitrary with the 
only restriction that they cannot vanish making any of  the functions M, P, Q 
undetermined or equal to zero [cf. (2.9), (3.5) and (3.6)]. 

A p p e n d i x  

The proof of  Theorem 1, at least in the way it was performed, is too long 
to allow its presentation here in totality. Therefore, we shall give here only 
a scheme of  the proof, putting emphasis on the more important items so as 
to allow anybody interested to easily carry out the proof in totality. 

First we shall write the general relations necessary for constructing the 
proof. Let a, b be auxiliary quantities which by (2.2) can be defined as 
follows: 

A 
a = - -  (A.la) 

def 

B 
b = -- (A.lb)  

def ~'~ 

which according to (2.1 a) and (2.1b) gives 

d u  = a e  I - b e  3 (A.2a) 

d v  = a e  2 - b e  4 (A.2b) 

w = ½(u - v) (A.3a) 
def 

s = ½(u + v) (A.3b) 
def 
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From (A.2) and (A.3) we obtain 

du ^ dv ^ dff ^ dF = 4 d w  ^ ds ^ dw ^ ds- = [(ab) z - (fib) 2] e I A e 2 ^ e 3 ^ e 4 
(a.4) 

E ~ (ab - 

62(a6 + 

E 3 (ab 2 

E 406 + 

The first Cartan formulas, if 
by (2.8) the form 

dE  I = R e A E  1 ^ E  3 + I m ( A  

dE  2 = - ( R e C E  1 + R e A E  3) 

~b) = 2(b ds - b ds) (A.5a) 

-ab) = 2 i ~  d w  - b d~,) (A.5b) 

~b ) = 2(~ as - a d'i) (A.Sc) 

Yb) = - 2 ( ~  d w  + a d~v) (A.Sd) 

Fa~ c are given by relations (2.1a)-(2.1 c), take 

+ D) E 4 ^ E 2 (A.6a) 

^ E  2 + 2 I m B E  4 ^ E 3 + I m ( A  + D ) E  1 ^ E  4 
(A.6b) 

dE  3 = ReB E 3 ^ E 1 + Im (B +C)  E 2 ^ E 4 (A.6c) 

dE  4 = -  (ReB E 1 + R e D E  3) ^ E 4 + 2 Im A E 1 ^ E 2 + Im (B + C) E 2 ^ E 3 
(a.6d) 

Equations (A.4) and (A.5) suggest that the proof of  Theorem 1 should be 
divided into four separate cases: 

ab + db 4=O, 

a'6 + ~b = O, 

ab + Yb --/= O, 

a-b + ab = O, 

And that is how we shall proceed. 

ab - ab ~ 0 (A.7a) 

a b  - ~b 4 = 0 (A . 7 b )  

ab - ~b = 0 (A.7c) 

ab - ~b = 0 (A.7d) 

The proof in case (A.7a) is relatively simple, since then from (A.4) we 
have d w  ^ ds ^ dw ^ ds-4:0 and the functions w, w, s, s may be used as 
independent coordinates; moreover all Eui may be calculated from equations 
(A.5) as functions of^ ,  a-, b, b. After these steps are performed we substitute 
E i into (A.6a) and (A.6c) and by comparing the coefficients at the same 
forms dxU ^ dx  v we find that Im (,4 + D) = Im (B + 6") = 0 and that the 
functions a, b depend only on the coordinates s and E Making use of  the 
latter information, taking account of  the theorem of  existence of  an integrat- 
ing factor, and after performing adequate partial transformation of  the co- 
ordinates s, ~--+ x, y,  from equations (A.Sa) and (A.5c) we obtain equations 
(2.11 a) and (2.11 c). Subsequently after partial transformation of  w = z + it 
we get from (A.5b) and (A.Sd) equations (2.11b) and (2.1 ld),  which in con- 
sequence give the proof of  Theorem 1 in the case (A.7a). 

The proofs in the remaining cases given in (A.7) are more complicated, 
since we can neither use all the functions s, s, w, ~ as independent co- 
ordinates nor Obtain all E / forms from equations (A.5). 
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In case (A.7b), assuming a = ao dC~ , we obtain that b = + ibo eic' = ice i'~, 
where c =clef +- bo. Subsequently, from equations (A.5b)and (A.5d), whose 

left-hand sides are equal to zero, we find that e-2 ie~dw = -  dff~, i.e., that 
c~ = c~(w) and that e - i a d w  is imaginary. Denoting 2e -i~ d w  =der i dz  we take 
the real quantity z as a coordinate. From relations (A.2) and (A.3) we then 
have 

dz  = ao E 2  + cE 4 (A.8) 

Subsequently we introduce the coordinate system s, ,~,z, r, where r = F, and 
having calculated E 1, E 3 from (A.5a) and (A.5c) we substitute them into 
equations (A.6a) and (A.6c). We obtain therefrom, in view of  the fact that 
all E / are independex!t, that Im(A +D)  = Im(B + C) = 0; hence we conclude 
further that e = const. The latter allows us to perform the following partial 
transformation of  coordinates: d x  = e -ic~ ds + e ic~ ds-, d y  = i(e 4e~ ds - eiC~ds ) 
as a result of  which we find ourselves in the system of  real coordinates 
x, y,  z, r. Making use of  this transformation in equations (A.Sa) and (A.5c) 
we find that E 1 = d x / a  o and E 3 = d v / c  [of course a o, c g= 0 by (A.7b)]. 
Substituting such E t and E 3 into (A.6a) and (A.6c) we conclude that the 
functions ao, c may depend only on the variables x,  y which gives us the 
relations (2.1 la) and (2.1 lc). In this way the part o f  Theorem 1 for case 
(A.Tb) has been proved. 

To prove the remaining parts of  the theorem for case (A.7b) we shall write 
the forms E 2 and E 4 in their most general shape in the system of  coordinates 
x, y,  z, r, i.e., E 2 = Eu2 • dxU and E 4 =E~z 4 - dxU.  From equation (A.8) it 
follows by virtue of the fact that the forms E i span the whole space-time 
that Er  4 = - (aa/c)Er  2 ~ O. The fact that Er 4 ~ 0 is crucial for the further 
proof, and we shall frequently make significant use of it. Now our objective 
is to find the functions Eu 2 , and Eu 4, which by (A.8) reduces to determining 
one of  the systems of  these quantities, e.g., Eu 4. For this purpose we act with 
operator d on both sides of  equation (A.8), and making use o f  the reIations 
(A.6b), (A.6d), (A.8) and taking account o f E r  4 4= 0, we obtain as a result 
the system of equations 

ao,x  - Re C + 2(e/ao)  Im A = 0 

C,x - (c /ao)  Re B = 0 

ao, y - (ao /c )  Re A = 0 

(A.9) 

C, y - Re D - 2 (ao /c )  Im B = 0 

Subsequently we take advantage of  relation (2.1d) making use of  the function 
f2' =clef f2eiC' instead of  f2 which is much more convenient. Putting ~2' = Ve i~, 

we find from equation (2.1d), since E 1 ~ d x  and E 3 ~ d y ,  that V and/3 may 
be functions of  x, y only. Relation (2.1d), considering that Im(A + D) = 
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Im(B + 6') = 0, gives the following system of  equations: 

0 x In V = - (1/ao) Re C 

0y In V = - (1/c) Re D 
(A.10) 

/3,,¢ = (l/a0) I m B  

fi,y = (l /c) Im A 

Combining equations (A.9) and (A.10), and making use of (A.1) we obtain 
the conditions that fi,x, fi,y ~ 0 and an easily integrable system of differential 
equations from which we find a o, c, V, t% as simple functions of the variable 
x, y and of disposable but different from zero functions re(x) and n(y) [after 
performing transformations x =x(x ' ) ,  y = y ( y ' )  immaterial as regards the 
shape of relations (2.11 a) and (2.1 tc), and dropping the primes] which gives 
us from (A.1) and (A.10) expressions for a o, c, and for the real and imaginary 
part s of A ,  B, C, D. Substituting these expressions into (A.6d) we obtain the 
following system of differential equations: 

- Ex 4 Y l + x Z y  2 E y 4  y(1 X y )J 

4 E4 = _ xY 2 Ez 4 + 
Ez,x  - x,z 1 + X2y 2 

XY 2 Er4 
L? ,~  - t ~ , ~  - 1 + x 2 y  2 

= [ 2 +x2y 2 
LY?-/;-iVg) 

__[ 2 +x2y2 
[y(i; 

2xy  2 

n(1 + x2y2)l /2  

n,yn ] Er4 

(A.11) 

Here equation (A.6b) results from equations (A.6d) and (A.8) if we take 
account of (A.9), and therefore it does not give any new relations. Integration 
of equations (A.11) becomes easier if we introduce new functions W, S as 
follows: W, z = Ez 4, S,r = Er 4. The integration itself is computationally 
cumbersome because of the number of equations in the system (A.11) and 
because of the number of disposable functions of the variables x, y ,  z, r that 
appear. Making use of the condition Er 4 :¢: 0 and performing in the course of 
integration a transformation of coordinate system of the type 

x , y ,  z, r -+ x , y ,  z, h ( x , y ,  z, r, T1, T2 . . . .  ) (A.12) 

where T i are the mentioned disposable functions appearing in the course of 
integration, we finally find such a transformation h = t of (A. t 2) type that 
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in the coordinate system x, y,  z, t we have E x  4 = E y  4 = O, Ez4(X ,  y ) ,  

E t 4 ( x ,  y )  4 = O, from which by (A.8) we obtain relations (2.1 lb)  and (2.1 ld), 
which terminates the proof of  Theorem 1 for the case (A.Tb). 

In the case (A.7c), assuming a = ao eie , we obtain b = -+ bo ei~ = ce ie, 

where c =aef +- bo. Subsequently from equations (A.5a) and (A.Sc), whose 
left-hand sides are now equal to zero, we find that e -2ic~ ds  = ds. Hence 
c~ = ~(s), and so, e-ic~ ds is real. Denoting 2e -ia ds  = d y  we assume the real 
quantity y as coordinate. From relations (A.2) and (A.3) we then obtain 

d y = a o  E1 - c E  3 (A.13) 

If we introduce the system of  coordinates x, y,  w, w, where x = x, then from 
equations (A.Sb) and (A.5d) we find that E x  2 = E y  2 = E x  4 = E y  4 = 0. Since 
all E i forms span the whole space-time, from the latter equations and (A.13) 
we get E x  1 = ( c / a o ) " E x  3 4= O. The  fact that E x  1 4= 0 is crucial for conducting 
further proof, as we shall frequently make significant use o f  it. Subsequently 
we calculate E 2 and E 4 from relations (A.Sb), (A.Sd) and substitute them 
into equations (A.6b) and (A.6d). Comparing the coefficients at different 
forms dxU ^ d x  v we obtain a system of  separate equations from the analysis 
of  which it follows readily that Im A = Im B = I m  C = Im D = 0 and that 
a = const if E x 1 vs O, which as we know holds. Hence the following partial 
transformation of  coordinates is possible, viz., i(e -i~ d w  - e i~ dffO = dz ,  

- -  (e - ia d w  + e ia • dff;) = d t ,  after realization of  which we obtain from 
relations (A.5b) and (A.Sd): 

E 2 = d z / a o ,  E 4 = d t / c  (A. 14) 

In this way we have found ourselves in the system of  real coordinates 
x, y,  z, t. Now let £2' =def ~2ei~. In the following we shall be using the function 
~2' instead of ~2 which is by far more convenient. Since Im A = Im B = 0, 
from (A.1) we get A = A = ao~ ' ,  B = f f  = c~2', and thus f2' is real. Hence in 
case (A.7c) we have Im A = Im B = I m  C = Im D = Im g2' = 0, and therefore 
in the following part of  the proof we shall be able to use only real quantities. 
In our new system of coordinates x,  y,  z, t the most general shape of  forms 
E 1, E 3 is as follows: E 1 = Eu 1 . dxU, E 3 = Eu 3 • d x ~ ,  the relation E x  1, E x  3 4 = 0 

still holding since the partial transformation of coordinates took place between 
w, ~ and z, t, only. Assuming such shapes of  forms E I and E 3 we obtain, 
after acting on both sides of  equation (A.13) with operator d and making 
use of  relations (A.6a) and (A.13) and condition Im(A + D) = 0, the system 
of equations 

1 _ _ +  --~'2'E/) 1 1 = 0  (A.t5)  
c c [c2 ¢ / 1  

where/J, v = x, y,  z, t and/ l  4= u. From relations (A.6b), (A. 13) and (A.6d), 
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(A. 13) we obtain two systems of  equations, alternately: 

. . . .  a° (cC + ao2fZ')E. 1 a°2 a Y, 
gO'# c C 

c,~ = (Da 0 + cZfZ')Eu 1 - D6uY, 

la = x , y ,  t (A.16) 

la = x, y ,  z (A.17) 

Let us denote 2/=def (cC + ao D) = (1/~2') (AD + BC). The remaining part o f  
the proof  splits into two cases: 3' 4= 0 and 2/= 0. 

If?/4= 0, then from (2.1d) and (A.t3)  we get E t = (1/7) (D dy  - cd in [2'). 
Since Ex I ~ 0 we have ~2',x ~ 0 and we can make the following transforma- 
tion of  coordinates: x , y ,  z ,  t -> X , y ,  z ,  t, where X = In [2'. Substituting the 
forms E 1, E 3 expressed in the new system of  coordinates into (A.6a), (A.6c) 
and analyzing the coefficients at indeipendent forms dxU ^ dx v we find that 
ao, t = ao, z = c,z = c, t = 0 and that E = F 1 (X,  y )  d X  + F 2 (X,  y )  dy ,  
E 3 = F3(X,  y )  d X  + F4(X,  y )  dy ,  from which, after making use o f  the inte- 
grating factor existence theorem, performing an adequate partial transforma- 
tion of  the coordinates x ' (X ,  y ) ,  y ' ( X ,  y ) ,  and dropping the primes, we obtain 
by (A.14) a particular case o f  equations (2.11) when l = p = 0. 

If  on the other hand 7 = 0, then we must have eC + ao2~ ' ~ 0 or 
c 2 ~  ' + aoD 4= O, since if both these expressions were equal to zero, then 
because of  7 = 0 we would have to have fZ' = 0 or ao 2 + c 2 = 0, which is 
contradictory to the assumptions. Now the proof for the case considered 
splits into two further branches, viz., when (ao/C), x = 0 and when 
(ao/C),x 4= O. If  (ao/c), x = 0, then from equations (A.16) and (A.17) and 
considering Ex i ~ 0 we find that o =aef cC + ao2~2 ' = c2~  + aoD 4= O, 
wherefrom it follows that 3 x In a 0 = 3 x In c 4= 0. After transformation of  
the coordinates: x ,  y ,  z, t -+ X,  y ,  z, t, where, e.g., X = In e (or possibly 
X = In ao) we obtain E 1 = 1/o(c d X  + D dy),  the continuation of the proof 
being the same as in the case 3' ~ 0 starting from an analogous point. If  on 
the other hand (ao/e), x 4= 0, then we consider separately four variants, i.e., 
all pairs when E z 1, Etl  are equal to or different from zero. After analyzing 
by means of  equations (A.6a), (A. 13), (A. 15-), (A.16), and (A. 17) each of  
the three variants different from E z 1 = Et l  = 0 (applying where necessary 
transformations of  coordinates analogous to those described in the preceding 
situations), we reach the conclusion that they are contradictory. Thus only 
the variant Ez i = E t l  = Et  3 = Ez 3 = 0 remains. Here we obtain immediately 
from equations (A. 15)-(A. 17) that ao, z = a o , t = e,z = c, t = 0, and hence 
from equations (A.6a), (A. 13) we conclude that the functions Ex 1 , Ey 1, Lx 3, 
Ey 3 depend only on the variables x, y. After applying the integrating factor 
existence theorem, adequate partial transformation of  coordinates x ' ( x ,  y ) ,  
y ' (x ,  y )  and dropping the primes, by relations (A.14) we get equations (2.11) 
for l = p = 0, which terminates the proof of  Theorem 1 in case (A.7c). 

In case (A.7d) at least one of  the quantities a, b must be equal to zero. 
Thus the proof splits into three separate subcases: (1 )a  :~ 0, b = 0; (2 )a  = 0, 
b ~ O ; ( 3 ) a = b  =0 .  
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In subcase (1) let us  assume that  a = ao eia. From equations (A.2),  (A.3), 
(A.5c), and (A.5d) we then obtain that  the expressions e -i°~ ds and e-i°~ d w  
are real and imaginary, respectively, and that  a = const. In this situation we 
can introduce two real coordinates x,  z in the following manner: dx  = 2e -i°~ ds, 
dz = 2ie -ic~ dw. From this we have E ~ = dx/a  o, E 2 = dz/ao.  Let m, n be the 
other two real coordinates. The most general shapes of  the forms E 3 and E 4 
in the coordinate system x, z, m, n are E 3 = Eu3 • dxU, E 4 = E g  4 " dx I~. Sub- 
stituting these E i into (A.6a) and analyzing the coefficients at different 
forms dxU ^ dx  v by-virtue of  the fact that  E i span the whole space-time we 
find that  Im(A + D) = 0. Let ~2' =aef g2eia. We then get from (A. la )  that  
A = a o ~ ' .  Let us now assume that Re A = 0 (which means that  Re ~2' = 0). 
Analyzing the imaginary part of  equation (2. ld )  we obtain, considering the 
facts that  E i span the whole space-time and that Im(A + D) = 0, the following 
relation: Im A = 0. This is contradictory to the assumption that  a 4= 0. Hence 
Re A 4= 0. We then obtain from relations (A.6a) and (A.6b) the following 
system of  equations: 

1 
Eu3 ao R e A  ( O u a ° -  6ux Re C), ~ x , z ,  m , n  (A.18) 

Since E 1 ~ dx ,  E 2 ~ dz,  we must have E m 3 @ 0 or E n 3 4: 0, and hence by 
(A. 18) a o ,m 4 : 0  or a o , n 4= 0. Let, e.g., a 0, m 4= 0. We shall t ransform the co- 
ordinate system x,  z, rn, n -+ x,  z, r, n, where r = in a o. F rom (A.18) we then 
find that  E 3 = (1/Re A )  (dr - e -r  Re C d x ) ,  and in the new coordinate 
system we have E 4 = Ex  4 dx + Ez 4 dz  + Er 4 dr + En 4 dn,  where we must 
have En 4 4: O. Substituting E i expressed in this system of coordinates into 
(A.6c) we find, considering En 4 4= O, that  Im C = 0, i.e., dE 3 = 0. Thus there 
exists such a quant i ty  y that E 3 = dy. After transformation of  the coordinates 
x, r, z, n -+ x, y ,  z, n we get 

E1 = --,dx E2 = dz__, E 3 = d y  (A.19) 
aO aO 

and it is easy to show, making use among other things of  equation (2.1d), 
that ao = ao(x,  y ) .  Thus we have obtained relations (2.1 la)-(2.1 lc) .  The 
form E 4 is still to be found. With this in view let us assume that g2' = Ve i~. 
From relation (2.1d) and since C = C we get that/3 = ~(y), I m A  = ~,y. From 
the latter two relations and from equations A = ~2'ao as well as (2.1d), (A.6b), 
(A.19) it follows that each of  the ao(x ,  y )  and V(x,  y )  functions must be the 
product  of  two functions of  one variable, and their product  a o V is a function 
o f y  only. Hence we see that Re D = - ~y in Vis also a function o f y  only. 
Making use of these relations and of  equations (A.19) in (A.6d) we get, in 
view of  the fact that B -- Im C -- 0, an easy to analyze relation determining 
the form E 4. It is most convenient to split this analysis into four separate 
cases of  all combinations when the quantities Im A and Re D are equal to 
or different from zero. In three variants when at least one of  the quantities 
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Im A or Re D is equal to zero we obtain easily from the Darboux theorems, 
either directly or making additionally use of the fact that d dE  a = 0, certain 
cases of  equation (2.1 t d). In the situation when I m  A 4~ 0 and Re D 4 :0  we 
can make the following transformation of  the coordinates x ( x ' ) ,  y(y ' ) :  
- R e  D dy  = dy ' ,  2(Ira A/ao  2) • dx  = ey'  dx ' ,  as a result of  which equation 
(A.6d) will take the form dE 4 = dy '  A E 4 + e y dx '  ^ dz. Integrating this 
equation and simultaneously, where possible, making the transformation 
dxU = ~v dxV, we finally get a new coordinate t such that E 4 = eY' (dt  + x ' d z ) .  
If we make a reciprocal transformation of  the coordinates x'(x),  y'Cv) or drop 
the primes, we get a particular case of  relation (2.I 1 d), which together with 
(A. 19) proves Theorem 1 for the variant considered. 

The proof of Theorem 1 in case (A.Td) and subcase (2), when a = 0 and 
b 4 :0  is fully analogous to sub case (1), as it suffices to make simultaneous 
mutual displacements A +~ B, C +~ D, E t "~ E 3, E 2 +~ E 4. 

The proof for subcase (3), when a = b = 0, is simple if we use equations 
(2.1 e) as an independent assumption, which is made here for the first time 
in the proof of  Theorem 1. From (2.le) by  (A.6a) and (A.6c) we obtain that 
E I = dx ,  E 3 = dy ,  and by (A.6b), (A.6d) and the Darboux theorems we get 
that E 2 = a d z ' ,  E 4 = p dr', Substituting such E i into (A.6b), (A.6d) and 
taking into account that C = C(x,  y ) ,  D = D ( x ,  y )  result from (2.1 d), we find 
that C(x), D(y), o = 2k(x )o ' ( z ' ) ,  p = 2 q ~ ) -  p '( t ' ) ,  which after the trans- 
formation clz = ~' dz ' ,  d t  = p '  d t ' ,  yields a subcase of  relations (2.11). 

In this way the proof of  Theorem 1 has been terminated. 
It deserves emphasizing that we have used assumption (2 . Ie )as  an 

independent assumption only in the proof of  subcase (3) (a = b = 0) of  case 
(A.7d). In all the remaining cases relation (2.1e) has been obtained as a con- 
clusion from assumptions (2.1 a)-(2.1d). From the formal point of  view 
Theorem 1 can be proved without using (2.1e) as assumption, if instead o f  
it we use the assumption that A 4 : 0  or B :~ 0. In that case relation (2.1e) 
will always be a conclusion from thus modified assumptions (2.1), but the 
class of  metrics (2.1 t )  determined by these assumptions would be poorer as 
it would not include cases for which A = B = 0. 
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